Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. The role of secondary organic aerosol (SOA) in atmospheric ice nucleation is not well understood, limiting accurate predictions of aerosol indirect effects in global climate simulations. This article details experiments performed to characterize the ice-nucleating properties of proxy SOA. Experimental techniques in conditioning aerosol to glass transition temperatures (Tg) as low as −70 °C using a pre-cooling unit are described. Ice nucleation measurements of proxy organosulfates (i.e., methyl, ethyl, and dodecyl sulfates) and citric acid were performed using the SPectrometer for ice nucleation (SPIN), operating at conditions relevant to upper-tropospheric cirrus temperatures (−45 °C, −40 °C, −35 °C) and ice saturation ratios (1.0<1.6). Methyl, ethyl, and dodecyl sulfates did not nucleate ice, despite dodecyl sulfate possessing a Tg higher than ambient temperature. Citric acid nucleated ice heterogeneously at −45 and −40 °C (1.2<1.4) but required pre-cooling temperatures of −70 °C, notably colder than the lowest published Tg. A kinetic flux model was used to numerically estimate water diffusion timescales to verify experimental observations and predict aerosol phase state. Diffusion modeling showed rapid liquefaction of glassy methyl and ethyl sulfates due to high hygroscopicity, preventing heterogeneous ice nucleation. The modeling results suggest that citric acid nucleated ice heterogeneously via deposition freezing or immersion freezing after surface liquefaction. We conclude that Tg alone is not sufficient for predicting heterogeneous ice formation for proxy SOA using the SPIN.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Small particles that are trapped, deposited, or otherwise fixed can be imaged by digital holography with a resolution approaching that of optical microscopy. When such particles are in motion as an aerosol, a comparable resolution is challenging to achieve. Using a simplified bi-telecentric lens system, we demonstrate that 1µm free-flowing aerosol particles can be imaged at the single-particle level using digital in-line holography. The imaging is demonstrated with an aerosol of 1µm polystyrene latex microspheres and a ragweed pollen aerosol.more » « less
-
Free, publicly-accessible full text available December 9, 2025
-
The urgency for remote, reliable and scalable biodiversity monitoring amidst mounting human pressures on ecosystems has sparked worldwide interest in Passive Acoustic Monitoring (PAM), which can track life underwater and on land. However, we lack a unified methodology to report this sampling effort and a comprehensive overview of PAM coverage to gauge its potential as a global research and monitoring tool. To address this gap, we created the Worldwide Soundscapes project, a collaborative network and growing database comprising metadata from 416 datasets across all realms (terrestrial, marine, freshwater and subterranean).more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government

Full Text Available